Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
2.
Emerg Microbes Infect ; 12(1): 2175593, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2253702

ABSTRACT

Recent research have shown that influenza C virus (ICV) has a possible higher clinical impact than previously thought. But knowledge about ICV is limited compared with influenza A and B viruses, due to poor systematic surveillance and inability to propagate. Herein, a case infected with triple reassortant ICV was identified during an influenza A(H3N2) outbreak, which was the first report of ICV infection in mainland China. Phylogenetic analysis showed that this ICV was triple reassortant. Serological evidence revealed that the index case might be related to family-clustering infection. Therefore, it is essential to heighten surveillance for the prevalence and variation of ICV in China, during the COVID-19 pandemic.


Subject(s)
COVID-19 , Influenza, Human , Influenzavirus C , Humans , Influenza, Human/epidemiology , Influenza A Virus, H3N2 Subtype/genetics , Pandemics , Phylogeny , China/epidemiology , Disease Outbreaks
3.
J Med Virol ; 2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2232560

ABSTRACT

With a large population most susceptible to Omicron and emerging SARS-CoV-2 variants, China faces uncertain scenarios if reopening its border. Thus, we aimed to predict the impact of combination preventative interventions on hospitalization and death. An age-stratified susceptible-infectious-quarantined-hospitalized-removed-susceptible (SIQHRS) model based on the new guidelines of COVID-19 diagnosis and treatment (the ninth edition) was constructed to simulate the transmission dynamics of Omicron within 365 days. At baseline, we assumed no interventions other than 60% booster vaccination in individuals aged <=60 years and 80% in individuals aged >60 years, quarantine and hospitalization. Oral antiviral medications for COVID-19 (e.g. BRII-196/BRII-198) and non-pharmaceutical interventions (NPIs) such as social distancing and antigen self-testing were considered in subsequent scenarios. Sensitivity analyses were conducted to reflect different levels of interventions. A total of 0.73 billion cumulative quarantines (95% CI 0.53-0.83), 33.59 million hospitalizations (22.41-39.31), and 0.62 million deaths (0.40-0.75) are expected in 365 days. The case fatality rate with pneumonia symptoms (moderate, severe and critical illness) is expected to be 1.83% (1.68-1.99%) and the infected fatality rate 0.38‰ (0.33-0.42‰). The highest existing hospitalization and ICU occupations are 3.11 (0.30-3.85) and 20.33 (2.01-25.20) times of capacity, respectively. Sensitivity analysis showed that interventions can be adjusted to meet certain conditions to reduce the total number of infections and deaths. In conclusion, after sufficient respiratory and ICU beds are prepared and the relaxed NPIs are in place, the SARS-CoV-2 Omicron variant would not seriously impact the health system. This article is protected by copyright. All rights reserved.

4.
Eur Respir J ; 59(2)2022 02.
Article in English | MEDLINE | ID: covidwho-1869041

ABSTRACT

The current pandemic of coronavirus disease 2019 (COVID-19) has affected >160 million individuals to date, and has caused millions of deaths worldwide, at least in part due to the unclarified pathophysiology of this disease. Identifying the underlying molecular mechanisms of COVID-19 is critical to overcome this pandemic. Metabolites mirror the disease progression of an individual and can provide extensive insights into their pathophysiological significance at each stage of disease. We provide a comprehensive view of metabolic characterisation of sera from COVID-19 patients at all stages using untargeted and targeted metabolomic analysis. As compared with the healthy controls, we observed different alteration patterns of circulating metabolites from the mild, severe and recovery stages, in both the discovery cohort and the validation cohort, which suggests that metabolic reprogramming of glucose metabolism and the urea cycle are potential pathological mechanisms for COVID-19 progression. Our findings suggest that targeting glucose metabolism and the urea cycle may be a viable approach to fight COVID-19 at various stages along the disease course.


Subject(s)
COVID-19 , Cohort Studies , Humans , Metabolomics , Pandemics , SARS-CoV-2
6.
J Med Virol ; 94(9): 4193-4205, 2022 09.
Article in English | MEDLINE | ID: covidwho-1844142

ABSTRACT

As one of the most rapidly evolving proteins of the genus Betacoronavirus, open reading frames (ORF8's) function and potential pathological consequence in vivo are still obscure. In this study, we show that the secretion of ORF8 is dependent on its N-terminal signal peptide sequence and can be inhibited by reactive oxygen species scavenger and endoplasmic reticulum-Golgi transportation inhibitor in cultured cells. To trace the effect of its possible in vivo secretion, we examined the plasma samples of coronavirus disease 2019 (COVID-19) convalescent patients and found that the patients aged from 40 to 60 had higher antibody titers than those under 40. To explore ORF8's in vivo function, we administered the mice with ORF8 via tail-vein injection to simulate the circulating ORF8 in the patient. Although no apparent difference in body weight, food intake, and vitality was detected between vehicle- and ORF8-treated mice, the latter displayed morphological abnormalities of testes and epididymides, as indicated by the loss of the central ductal lumen accompanied by a decreased fertility in 5-week-old male mice. Furthermore, the analysis of gene expression in the testes between vehicle- and ORF8-treated mice identified a decreased expression of Col1a1, the loss of which is known to be associated with mice's infertility. Although whether our observation in mice could be translated to humans remains unclear, our study provides a potential mouse model that can be used to investigate the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on the human reproductive system.


Subject(s)
COVID-19 , Infertility, Male , SARS-CoV-2 , Viral Proteins , Amino Acid Sequence , Animals , Antibodies, Viral/blood , Fertility , Humans , Infertility, Male/virology , Male , Mice , Open Reading Frames
7.
Nat Commun ; 13(1): 460, 2022 01 24.
Article in English | MEDLINE | ID: covidwho-1651070

ABSTRACT

The SARS-CoV-2 Delta variant has spread rapidly worldwide. To provide data on its virological profile, we here report the first local transmission of Delta in mainland China. All 167 infections could be traced back to the first index case. Daily sequential PCR testing of quarantined individuals indicated that the viral loads of Delta infections, when they first become PCR-positive, were on average ~1000 times greater compared to lineage A/B infections during the first epidemic wave in China in early 2020, suggesting potentially faster viral replication and greater infectiousness of Delta during early infection. The estimated transmission bottleneck size of the Delta variant was generally narrow, with 1-3 virions in 29 donor-recipient transmission pairs. However, the transmission of minor iSNVs resulted in at least 3 of the 34 substitutions that were identified in the outbreak, highlighting the contribution of intra-host variants to population-level viral diversity during rapid spread.


Subject(s)
COVID-19/transmission , Contact Tracing/methods , Disease Outbreaks/prevention & control , SARS-CoV-2/isolation & purification , Animals , COVID-19/epidemiology , COVID-19/virology , Chlorocebus aethiops , Humans , RNA-Seq/methods , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Time Factors , Vero Cells , Viral Load/genetics , Viral Load/physiology , Virus Replication/genetics , Virus Replication/physiology , Virus Shedding/genetics , Virus Shedding/physiology
9.
J Med Virol ; 94(1): 327-334, 2022 01.
Article in English | MEDLINE | ID: covidwho-1410052

ABSTRACT

Genomic surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) plays an important role in COVID-19 pandemic control and elimination efforts, especially by elucidating its global transmission network and illustrating its viral evolution. The deployment of multiplex PCR assays that target SARS-CoV-2 followed by either massively parallel or nanopore sequencing is a widely-used strategy to obtain genome sequences from primary samples. However, multiplex PCR-based sequencing carries an inherent bias of sequencing depth among different amplicons, which may cause uneven coverage. Here we developed a two-pool, long-amplicon 36-plex PCR primer panel with ~1000-bp amplicon lengths for full-genome sequencing of SARS-CoV-2. We validated the panel by assessing nasopharyngeal swab samples with a <30 quantitative reverse transcription PCR cycle threshold value and found that ≥90% of viral genomes could be covered with high sequencing depths (≥20% mean depth). In comparison, the widely-used ARTIC panel yielded 79%-88% high-depth genome regions. We estimated that ~5 Mbp nanopore sequencing data may ensure a >95% viral genome coverage with a ≥10-fold depth and may generate reliable genomes at consensus sequence levels. Nanopore sequencing yielded false-positive variations with frequencies of supporting reads <0.8, and the sequencing errors mostly occurred on the 5' or 3' ends of reads. Thus, nanopore sequencing could not elucidate intra-host viral diversity.


Subject(s)
Genome, Viral/genetics , Multiplex Polymerase Chain Reaction/methods , Nanopore Sequencing/methods , SARS-CoV-2/genetics , Whole Genome Sequencing/methods , COVID-19 , High-Throughput Nucleotide Sequencing/methods , Humans , Nasopharynx/virology , RNA, Viral/genetics , Sequence Analysis, RNA/methods
11.
J Clin Microbiol ; 59(8): e0007921, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1218187

ABSTRACT

While China experienced a peak and decline in coronavirus disease 2019 (COVID-19) cases at the start of 2020, regional outbreaks continuously emerged in subsequent months. Resurgences of COVID-19 have also been observed in many other countries. In Guangzhou, China, a small outbreak, involving less than 100 residents, emerged in March and April 2020, and comprehensive and near-real-time genomic surveillance of SARS-CoV-2 was conducted. When the numbers of confirmed cases among overseas travelers increased, public health measures were enhanced by shifting from self-quarantine to central quarantine and SARS-CoV-2 testing for all overseas travelers. In an analysis of 109 imported cases, we found diverse viral variants distributed in the global viral phylogeny, which were frequently shared within households but not among passengers on the same flight. In contrast to the viral diversity of imported cases, local transmission was predominately attributed to two specific variants imported from Africa, including local cases that reported no direct or indirect contact with imported cases. The introduction events of the virus were identified or deduced before the enhanced measures were taken. These results show the interventions were effective in containing the spread of SARS-CoV-2, and they rule out the possibility of cryptic transmission of viral variants from the first wave in January and February 2020. Our study provides evidence and emphasizes the importance of controls for overseas travelers in the context of the pandemic and exemplifies how viral genomic data can facilitate COVID-19 surveillance and inform public health mitigation strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , Africa , COVID-19 Testing , China/epidemiology , Genomics , Humans
12.
Atmos Environ (1994) ; 246: 118083, 2021 Feb 01.
Article in English | MEDLINE | ID: covidwho-938762

ABSTRACT

BACKGROUND: Nine COVID-19 (Corona Virus Disease, 2019) cases were observed in one community in Guangzhou. All the cases lived in three vertically aligned units of one building sharing the same piping system, which provided one unique opportunity to examine the transmission mode of SARS-CoV-2. METHODS: We interviewed the cases on the history of travelling and close contact with the index patients. Respiratory samples from all the cases were collected for viral phylogenetic analyses. A simulation experiment in the building and a parallel control experiment in a similar building were then conducted to investigate the possibility of transmission through air. RESULTS: Index patients living in Apartment 15-b had a travelling history in Wuhan, and four cases who lived in Apartment 25-b and 27-b were subsequently diagnosed. Phylogenetic analyses showed that virus of all the patients were from the same strain of the virus. No close contacts between the index cases and other families indicated that the transmission might not occur through droplet and close contacts. Airflow detection and simulation experiment revealed that flushing the toilets could increase the speed of airflow in the pipes and transmitted the airflow from Apartment 15-b to 25-b and 27-b. Reduced exhaust flow rates in the infected building might have contributed to the outbreak. CONCLUSIONS: The outbreak of COVID-19 in this community could be largely explained by the transmission through air, and future efforts to prevent the infection should take the possibility of transmission through air into consideration. A disconnected drain pipe and exhaust pipe for toilet should be considered in the architectural design to help prevent possible virus spreading through the air.

13.
Clin Infect Dis ; 73(7): e1487-e1488, 2021 10 05.
Article in English | MEDLINE | ID: covidwho-846801

ABSTRACT

BACKGROUND: Sewage transmission of SARS-CoV-2 has never been demonstrated. During a COVID-19 outbreak in Guangzhou, China in April 2020, we investigated the mode of transmission. METHODS: We collected clinical and environmental samples from quarantined residents and their environment for RT-PCR testing and genome sequencing. A case was a resident with a positive RT-PCR test regardless of symptoms. We conducted a retrospective cohort study of all residents of cases' buildings to identify risk factors. RESULTS: We found 8 cases (onset: 5-21 April). During incubation period, cases 1 and 2 frequented market T where a COVID-19 outbreak was ongoing; cases 3-8 never visited market T, lived in separate buildings and never interacted with cases 1 and 2. Working as a janitor or wastepicker (RR = 13; 95% CIexact, 2.3-180), not changing to clean shoes (RR = 7.4; 95% CIexact, 1.8-34) and handling dirty shoes by hand (RR = 6.3; 95% CIexact, 1.4-30) after returning home were significant risk factors. RT-PCR detected SARS-CoV-2 in 19% of 63 samples from sewage puddles or pipes, and 24% of 50 environmental samples from cases' apartments. Viruses from the squat toilet and shoe-bottom dirt inside the apartment of cases 1 and 2 were homologous with those from cases 3-8 and the sewage. Sewage from the apartment of cases 1 and 2 leaked out of a cracked pipe onto streets. Rainfall after the onset of cases 1 and 2 flooded the streets. CONCLUSIONS: SARS-CoV-2 might spread by sewage, highlighting the importance of sewage management during outbreaks.


Subject(s)
COVID-19 , Sewage , China/epidemiology , Disease Outbreaks , Humans , Retrospective Studies , SARS-CoV-2
15.
BMC Public Health ; 20(1): 1202, 2020 Aug 05.
Article in English | MEDLINE | ID: covidwho-696961

ABSTRACT

BACKGROUND: More than 2 months have passed since the novel coronavirus disease 2019 (COVID-19) first emerged in Wuhan, China. With the migration of people, the epidemic has rapidly spread within China and throughout the world. Due to the severity of the epidemic, undiscovered transmission of COVID-19 deserves further investigation. The aim of our study hypothesized possible modes of SARS-CoV-2 transmission and how the virus may have spread between two family clusters within a residential building in Guangzhou, China. METHODS: In a cross-sectional study, we monitored and traced confirmed patients and their close contacts from January 11 to February 5, 2020 in Guangzhou, China, including 2 family cluster cases and 61 residents within one residential building. The environmental samples of the building and the throat swabs from the patients and from their related individuals were collected for SARS-CoV-2 and tested with real-time reverse transcriptase polymerase chain reaction (RT-PCR). The relevant information was collected and reported using big data tools. RESULTS: There were two notable family cluster cases in Guangzhou, which included 3 confirmed patients (family No.1: patient A, B, C) and 2 confirmed patients (family No.2: patient D, E), respectively. None of patients had contact with other confirmed patients before the onset of symptoms, and only patient A and patient B made a short stop in Wuhan by train. Home environment inspection results showed that the door handle of family No.1 was positive of SARS-CoV-2. The close contacts of the 5 patients all tested negative of SARS-CoV-2 and in good health, and therefore were released after the official medical observation period of 14-days. Finally, according to the traceability investigation through applying big data analysis, we found an epidemiological association between family No.1 and family No.2, in which patient D (family No.2) was infected through touching an elevator button contaminated by snot with virus from patient A (family No.1) on the same day. CONCLUSIONS: Contaminants with virus from confirmed patients can pollute the environment of public places, and the virus can survive on the surface of objects for a short period of time. Therefore, in addition to the conventional droplet transmission, there is also indirect contact transmission such as snot-oral transmission that plays a crucial role in community spread of the virus.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Family , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Adult , Aged , COVID-19 , China/epidemiology , Cluster Analysis , Contact Tracing , Cross-Sectional Studies , Environmental Microbiology , Female , Humans , Male , Middle Aged , Pandemics , Real-Time Polymerase Chain Reaction , Residence Characteristics , SARS-CoV-2
16.
J Clin Lab Anal ; 34(1): e23032, 2020 Jan.
Article in English | MEDLINE | ID: covidwho-326814

ABSTRACT

BACKGROUND: Respiratory viruses, such as influenza viruses, initially infect the upper airways but can manifest as severe lower respiratory tract infections in high-risk patients with significant morbidity and mortality. For syndromic diagnosis, several multiplex nucleic acid amplification tests have been developed for clinics, of which SureX 13 Respiratory Pathogen Multiplex Kit (ResP) can simultaneously detect 13 pathogens directly from airway secretion specimens. The organisms identified are influenza virus A, influenza virus A pdmH1N1 (2009), influenza virus A H3N2, influenza virus B, adenovirus, boca virus, rhinovirus, parainfluenza virus, coronavirus, respiratory syncytial virus, human metapneumovirus, Mycoplasma pneumoniae, and Chlamydia. METHODS: This study provides performance evaluation data of this assay by comparing with pathogen-specific PCRs from oropharyngeal swab samples. RESULTS: Ten pathogens were detected in this assay, of which rhinovirus, adenovirus, and influenza virus A pdmH1N1 (2009) were the most common. The overall agreement between the ResP and the comparator tests was 93.8%. The ResP demonstrated 86.5% agreement for positive results and 97.8% agreement for negative results. CONCLUSION: The ResP assay demonstrated a highly concordant performance comparing with pathogen-specific PCRs for detection of respiratory pathogens in oropharyngeal swabs from outpatients and could aid in the diagnosis of respiratory infections in a variety of clinical scenarios.


Subject(s)
Ambulatory Care/methods , Multiplex Polymerase Chain Reaction/methods , Oropharynx/virology , Pneumonia, Mycoplasma , Pneumonia, Viral , Adenoviridae/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Influenza A virus/genetics , Male , Middle Aged , Mycoplasma pneumoniae/genetics , Pneumonia, Mycoplasma/diagnosis , Pneumonia, Mycoplasma/microbiology , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , RNA, Viral/analysis , RNA, Viral/genetics , Rhinovirus/genetics , Young Adult
17.
Cell ; 181(5): 997-1003.e9, 2020 05 28.
Article in English | MEDLINE | ID: covidwho-60418

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2 infection and was first reported in central China in December 2019. Extensive molecular surveillance in Guangdong, China's most populous province, during early 2020 resulted in 1,388 reported RNA-positive cases from 1.6 million tests. In order to understand the molecular epidemiology and genetic diversity of SARS-CoV-2 in China, we generated 53 genomes from infected individuals in Guangdong using a combination of metagenomic sequencing and tiling amplicon approaches. Combined epidemiological and phylogenetic analyses indicate multiple independent introductions to Guangdong, although phylogenetic clustering is uncertain because of low virus genetic variation early in the pandemic. Our results illustrate how the timing, size, and duration of putative local transmission chains were constrained by national travel restrictions and by the province's large-scale intensive surveillance and intervention measures. Despite these successes, COVID-19 surveillance in Guangdong is still required, because the number of cases imported from other countries has increased.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , Bayes Theorem , COVID-19 , China/epidemiology , Coronavirus Infections/virology , Epidemiological Monitoring , Humans , Likelihood Functions , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Travel
18.
Emerg Infect Dis ; 26(7): 1628-1631, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-31116

ABSTRACT

During January 26-February 10, 2020, an outbreak of 2019 novel coronavirus disease in an air-conditioned restaurant in Guangzhou, China, involved 3 family clusters. The airflow direction was consistent with droplet transmission. To prevent the spread of the virus in restaurants, we recommend increasing the distance between tables and improving ventilation.


Subject(s)
Air Conditioning/adverse effects , Betacoronavirus , Coronavirus Infections/epidemiology , Disease Outbreaks , Pneumonia, Viral/epidemiology , COVID-19 , China/epidemiology , Coronavirus Infections/transmission , Family , Humans , Pandemics , Pneumonia, Viral/transmission , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL